컨텐츠상세보기

9가지 사례로 익히는 고급 스파크 분석 (2판)
9가지 사례로 익히는 고급 스파크 분석 (2판)
  • 저자<샌디 라이자>,<유리 레이저슨>,<션 오언>,<조시 윌스> 공저/<박상은>,<권한철>,<서양주> 공역
  • 출판사한빛미디어
  • 출판일2018-03-15
  • 등록일2018-07-11
보유 2, 대출 0, 예약 0, 누적대출 0, 누적예약 0

책소개

다양한 현실 세계 예제로 스파크 2의 진면목을 경험한다. 

이 책은 독자에게 대량의 데이터셋을 가지고 스파크 2를 활용해 복잡한 분석과 머신러닝 학습을 실제로 해보는 생생한 느낌을 전달한다. 단순히 모델을 구축하고 평가하는 데 그치지 않고, 데이터 정제부터 전처리, 데이터 조사, 실제 제품을 만들기까지의 전체 파이프라인을 보여준다. 이러한 과정을 다양한 분야에서 가져온 현실 예제에 맞게 교차 최소 제곱 추천 알고리즘, 의사 결정 나무, K-평균 군집화, 숨은 의미 분석, 세션화, 몬테카를로 시뮬레이션 등의 기법을 동원해 풀어본다.

저자소개

리믹스에서 대중교통에 적용할 수 있는 알고리즘을 개발하고 있다. 이전에는 클라우데라와 클로버 헬스에서 선임 데이터 과학자로 근무했다. 아파치 스파크 커미터이자 아파치 하둡의 PMC 멤버이며 스파크 시계열 데이터 처리 프로젝트의 창설자다. 2012년 브라운 대학교 전산학과의 트와이닝 어워즈에서 ‘Most Chill’ 부문을 수상했다.

목차

1장. 빅데이터 분석하기
1.1 데이터 과학의 어려움
1.2 아파치 스파크란
1.3 이 책에 관하여
1.4 2판에 관하여

2장. 스칼라와 스파크를 활용한 데이터 분석
2.1 데이터 과학자를 위한 스칼라
2.2 스파크 프로그래밍 모델
2.3 레코드 링크
2.4 스파크 셸과 SparkContext 시작하기
2.5 클러스터에서 클라이언트로 데이터 가져오기
2.6 클라이언트에서 클러스터로 코드 보내기
2.7 RDD에서 Data Frame으로
2.8 DataFrame API로 데이터 분석하기
2.9 데이터프레임에 대한 빠른 요약 통계
2.10 데이터프레임의 축 회전과 형태변환
2.11 데이터프레임을 결합하고 특징 선택하기
2.12 실제 환경을 위한 모델 준비하기
2.13 모델 평가
2.14 한 걸음 더 나아가기

3장. 음악 추천과 Audioscrobbler 데이터셋
3.1 데이터셋
3.2 교차 최소 제곱 추천 알고리즘
3.3 데이터 준비하기
3.4 첫 번째 모델 만들기
3.5 추천 결과 추출 검사하기
3.6 추천 품질 평가하기
3.7 AUC 계산하기
3.8 하이퍼파라미터 선택하기
3.9 추천 결과 만들기
3.10 한 걸음 더 나아가기

4장. 의사 결정 나무로 산림 식생 분포 예측하기
4.1 회귀로 돌아와서
4.2 벡터와 특징
4.3 학습 예제
4.4 의사 결정 나무와 랜덤 포레스트
4.5 Covtype 데이터셋
4.6 데이터 준비하기
4.7 첫 번째 의사 결정 나무
4.8 의사 결정 나무 하이퍼파라미터
4.9 의사 결정 나무 튜닝하기
4.10 범주형 특징 다시 살펴보기
4.11 랜덤 포레스트
4.12 예측하기
4.13 한 걸음 더 나아가기

5장. K-평균 군집화로 네트워크 이상 탐지하기
5.1 이상 탐지
5.2 K-평균 군집화
5.3 네트워크 침입
5.4 KDD 컵 1999 데이터셋
5.5 첫 번째 군집화하기
5.6 k 선정하기
5.7 R에서 시각화하기
5.8 특징 정규화
5.9 범주형 변수
5.10 엔트로피와 함께 레이블 활용하기
5.11 군집화하기
5.12 한 걸음 더 나아가기

6장. 숨은 의미 분석으로 위키백과 이해하기
6.1 문서-단어 행렬
6.2 데이터 구하기
6.3 파싱하여 데이터 준비하기
6.4 표제어 추출
6.5 단어빈도-역문서빈도(TF-IDF) 계산하기
6.6 특잇값 분해
6.7 중요한 의미 찾기
6.8 낮은 차원 표현에 대한 의문과 고찰
6.9 단어와 단어 사이의 연관도
6.10 문서와 문서 사이의 연관도
6.11 문서와 단어 사이의 연관도
6.12 여러 개의 단어로 질의하기
6.13 한 걸음 더 나아가기

7장. 그래프엑스로 동시발생 네트워크 분석하기
7.1 네트워크 분석 사례: MEDLINE의 인용 색인
7.2 데이터 구하기
7.3 스칼라 XML 라이브러리로 XML 문서 파싱하기
7.4 MeSH 주요 주제와 주제들의 동시발생 분석하기
7.5 그래프엑스로 동시발생 네트워크 구성하기
7.6 네트워크의 구조 이해하기
7.7 관련성 낮은 관계 필터링하기
7.8 작은 세상 네트워크
7.9 한 걸음 더 나아가기 

8장. 뉴욕 택시 운행 데이터로 위치 및 시간 데이터 분석하기
8.1 데이터 얻기
8.2 스파크에서 서드파티 라이브러리로 작업하기
8.3 지리 데이터와 Esri Geometry API, 그리고 Spray
8.4 뉴욕 택시 운행 데이터 준비하기
8.5 스파크에서 세션화 작업 수행하기
8.6 한 걸음 더 나아가기

9장. 몬테카를로 시뮬레이션으로 금융 리스크 추정하기
9.1 전문 용어
9.2 VaR 계산 방법
9.3 우리의 모델
9.4 데이터 구하기
9.5 전처리하기
9.6 요인 가중치 결정하기
9.7 표본추출
9.8 실험 실행하기
9.9 수익 분포 시각화하기
9.10 결과 평가하기
9.11 한 걸음 더 나아가기

10장. BDG 프로젝트와 유전체학 데이터 분석하기
10.1 모델링과 저장소를 분리하기
10.2 ADAM CLI를 이용한 유전체학 데이터 처리
10.3 ENCODE 데이터로부터 전사인자 결합 부위 예측하기
10.4 1000 지놈 프로젝트에서 유전자형 질의하기
10.5 한 걸음 더 나아가기

11장. 파이스파크와 썬더로 신경 영상 데이터 분석하기
11.1 파이스파크 소개
11.2 썬더 라이브러리 개요와 설치
11.3 썬더로 데이터 읽어 들이기
11.4 썬더로 신경 세포 유형 분류하기
11.5 한 걸음 더 나아가기

8. 관련 도서 (제목   ISBN)
● 처음 배우는 데이터 과학 / 9791162240472
● 파이썬 라이브러리를 활용한 데이터 분석(수정보완판) / 9788968480478
● 파이썬 라이브러리를 활용한 머신러닝 / 9788968483394
● 파이썬을 활용한 금융 분석 / 9788968482779